Identification of pathogenic microorganisms in horticultural products
Keywords:
agriculture, food, microbiological analysis, foodborne illnesses, food safetySynopsis
The growing demand for fresh horticultural products has increased concerns about the presence of harmful bacteria that jeopardize food safety. In Ecuador, particularly in the Guaranda canton, the microbiological quality of marketed fruits and vegetables is not effectively controlled. Foodborne illnesses (FBIs), caused by bacteria such as Salmonella spp., Listeria monocytogenes, and Escherichia coli, pose a serious threat to public health, especially among vulnerable groups. In this context, the present study employed microbiological and molecular methods to detect the presence of these pathogens in commonly consumed horticultural products. Samples of lettuce (Lactuca sativa), broccoli (Brassica oleracea var. italica), blackberries (Rubus glaucus), and grapes (Vitis vinifera) were collected from six markets in the Guaranda canton. Microbiological procedures, biochemical assays, and conventional PCR were applied. A factorial A×B design was used, with three dilution levels and three types of pathogens, and statistical analysis was carried out using multifactorial ANOVA. Different concentrations of Salmonella spp., Listeria monocytogenes, and E. coli strains were detected in the analyzed samples. The presence of these pathogens was confirmed using conventional PCR techniques. The ANOVA results showed statistically significant differences between microorganism types and dilution levels, suggesting that contamination levels vary depending on the product and the market of origin. Some of the analyzed fruits and vegetables were found to exceed the microbiological limits established by Ecuadorian regulation NTE INEN 1334-1. The prevalence of harmful microorganisms in horticultural products reflects deficiencies in post-harvest hygiene procedures and in the distribution chain. To reduce the incidence of FBIs, the implementation of Good Manufacturing Practices (GMP) and continuous monitoring programs is recommended. These findings highlight the need to improve microbiological surveillance systems for fresh food in Guaranda. The molecular identification of pathogens can serve as a foundation for public policy decision-making aimed at protecting consumer health.
Downloads
References
A. Possas and F. Pérez-Rodríguez, “New insights into cross-contamination of fresh-produce,” Curr. Opin. Food Sci., vol. 49, p. 100954, Feb. 2023, doi: 10.1016/j.cofs.2022.100954.
M. D. Ruiz Medina and J. Ruales, “Post-Harvest Alternatives in Banana Cultivation,” Agronomy, vol. 14, no. 9, p. 2109, Sep. 2024, doi: 10.3390/agronomy14092109.
R. Alonso-Salinas, S. López-Miranda, A. J. Pérez-López, and J. R. Acosta-Motos, “Strategies to Delay Ethylene-Mediated Ripening in Climacteric Fruits: Implications for Shelf Life Extension and Postharvest Quality,” Horticulturae, vol. 10, no. 8, p. 840, Aug. 2024, doi: 10.3390/horticulturae10080840.
A. J. Reyes, H. E. Balaguera-López, and D. A. Castellanos, “Effect of temperature, 1-methylcyclopropene, and modified atmosphere packaging on the post-harvest behavior of lulo (Solanum quitoense Lam),” Sci. Hortic. (Amsterdam)., vol. 329, p. 113012, Apr. 2024, doi: 10.1016/j.scienta.2024.113012.
M. O. Oduoye et al., “Diseases Transmitted to Humans through Foodborne Microbes in the Global South,” in Food Safety and Quality in the Global South, Singapore: Springer Nature Singapore, 2024, pp. 561–597. doi: 10.1007/978-981-97-2428-4_18.
C. C. Adley and M. P. Ryan, “The Nature and Extent of Foodborne Disease,” in Antimicrobial Food Packaging, Elsevier, 2025, pp. 3–14. doi: 10.1016/B978-0-323-90747-7.00002-8.
T. Li et al., “Global burden of enteric infections related foodborne diseases, 1990–2021: findings from the Global Burden of Disease Study 2021,” Sci. One Heal., vol. 3, p. 100075, 2024, doi: 10.1016/j.soh.2024.100075.
A. M. Abdelshafy et al., “Recent Advances in Detection and Control Strategies for Foodborne Bacteria in Raw and Ready‐to‐Eat Fruits and Vegetables,” Food Front., vol. 6, no. 2, pp. 605–629, Mar. 2025, doi: 10.1002/fft2.541.
Prefectura de Manabí, “Política pública para la implementación de la agricultura agroecológica, como instrumento que contribuya a la aplicación de normas amigables con el ambiente, el productor, con su entorno familiar, social y económico,” Ecuador, 2022. [Online]. Available: https://www.manabi.gob.ec/wp-content/uploads/2023/03/POLITICA-PUBLICA-AGRICULTURA-AGROECOLOGICA.pdf
A. Zizza, A. Fallucca, M. Guido, V. Restivo, M. Roveta, and C. Trucchi, “Foodborne Infections and Salmonella: Current Primary Prevention Tools and Future Perspectives,” Vaccines, vol. 13, no. 1, p. 29, Dec. 2024, doi: 10.3390/vaccines13010029.
A. Mishra et al., “Recent advances in multiplex aptasensor detection techniques for food-borne pathogens: A comprehensive review of novel approaches,” Biosens. Bioelectron. X, vol. 16, p. 100417, Feb. 2024, doi: 10.1016/j.biosx.2023.100417.
C. M. C. Andrés, J. M. Pérez de la Lastra, E. B. Munguira, C. A. Juan, and E. Pérez-Lebeña, “The Multifaceted Health Benefits of Broccoli—A Review of Glucosinolates, Phenolics and Antimicrobial Peptides,” Molecules, vol. 30, no. 11, p. 2262, May 2025, doi: 10.3390/molecules30112262.
L. Li, P. Ma, S. Nirasawa, and H. Liu, “Formation, immunomodulatory activities, and enhancement of glucosinolates and sulforaphane in broccoli sprouts: a review for maximizing the health benefits to human,” Crit. Rev. Food Sci. Nutr., vol. 64, no. 20, pp. 7118–7148, Aug. 2024, doi: 10.1080/10408398.2023.2181311.
F. Branca, G. L. Chiarenza, C. Cavallaro, H. Gu, Z. Zhao, and A. Tribulato, “Diversity of Sicilian broccoli (Brassica oleracea var. italica) and cauliflower (Brassica oleracea var. botrytis) landraces and their distinctive bio-morphological, antioxidant, and genetic traits,” Genet. Resour. Crop Evol., vol. 65, no. 2, pp. 485–502, Feb. 2018, doi: 10.1007/s10722-017-0547-8.
T. Farooq, Z. U. Abadin, M. Umar, M. N. Aslam, A. Moosa, and M. T. Shakeel, “Lettuce,” in Viral Diseases of Field and Horticultural Crops, Elsevier, 2024, pp. 529–535. doi: 10.1016/B978-0-323-90899-3.00069-0.
A. Kumar, Pringchinoramarak, S. Mishra, S. K. Ekka, R. Kujur, and J. Lakra, “A Review on the Nutritional Value of Some Leafy Vegetables used in India,” Asian J. Biol., vol. 20, no. 1, pp. 26–31, Feb. 2024, doi: 10.9734/ajob/2024/v20i1383.
R. Selvakumar, Y. A. Lyngdoh, T. Seth, and A. Watts, “Lettuce Genetic Resources and Their Utilisation in Improvement,” 2025, pp. 1173–1194. doi: 10.1007/978-981-97-8949-8_36.
M. Beukers and M. Hondelink, “Grape (Vitis vinifera) use in the early modern Low Countries: a tentative combination of aDNA-analysis and historical sources,” Veg. Hist. Archaeobot., Mar. 2025, doi: 10.1007/s00334-025-01041-y.
G. Pambianchi and M. Gentilucci, “Hystory of viticulture in relation to climate change (from Neolithic to the fall of the Roman Empire),” CATENA, vol. 247, p. 108528, Dec. 2024, doi: 10.1016/j.catena.2024.108528.
FEN, “Uva Grape,” Fund. Española la Nutr., pp. 301–302, 2022, [Online]. Available: https://www.fen.org.es/MercadoAlimentosFEN/pdfs/uva.pdf
R. Cifuentes et al., “Insights into the virome of the Andean blackberry (Rubus glaucus) in Ecuador,” Eur. J. Plant Pathol., May 2025, doi: 10.1007/s10658-025-03058-5.
Ó. Acosta-Montoya, F. Vaillant, S. Cozzano, C. Mertz, A. M. Pérez, and M. V. Castro, “Phenolic content and antioxidant capacity of tropical highland blackberry (Rubus adenotrichus Schltdl.) during three edible maturity stages,” Food Chem., vol. 119, no. 4, pp. 1497–1501, Apr. 2010, doi: 10.1016/j.foodchem.2009.09.032.
A. Schmidt-Durán, M. Rodríguez-Monroy, and O. Acosta-Montoya, “La mora tropical de altura (Rubus adenotrichos Schltdl.) como potencial alimento funcional: una mirada a las investigaciones realizadas,” Rev. Tecnol. en Marcha, Dec. 2023, doi: 10.18845/tm.v37i1.6654.
W. A. Cardona, Manual de nutrición del cultivo de mora de Castilla (Rubus glaucus Benth.) bajo un esquema de buenas prácticas en fertilización integrada. Corporación Colombiana de Investigación Agropecuaria (Agrosavia), 2019. doi: 10.21930/agrosavia.manual-18.
K. C. M. da Costa et al., “Enhancing Vascular Health and Lowering Blood Pressure in Spontaneously Hypertensive Rats through Syrah Grape (Vitis vinifera) Pomace: The Role of Phenolic Compounds,” Nutrients, vol. 16, no. 14, p. 2312, Jul. 2024, doi: 10.3390/nu16142312.
Y. El Rayess, N. Nehme, S. Azzi-Achkouty, and S. G. Julien, “Wine Phenolic Compounds: Chemistry, Functionality and Health Benefits,” Antioxidants, vol. 13, no. 11, p. 1312, Oct. 2024, doi: 10.3390/antiox13111312.
K. Buczyński, M. Kapłan, and Z. Jarosz, “Review of the Report on the Nutritional and Health-Promoting Values of Species of the Rubus L. Genus,” Agriculture, vol. 14, no. 8, p. 1324, Aug. 2024, doi: 10.3390/agriculture14081324.
M. K. Erdogan et al., “Comparison of Anticancer, Antioxidant, Enzyme Inhibitory Effects and Phytochemical Contents Between Edible Lettuce ( Lactuca sativa ) and a New Wild Species ( Lactuca anatolica ),” Chem. Biodivers., vol. 21, no. 9, Sep. 2024, doi: 10.1002/cbdv.202400552.
E. Jankaitytė et al., “Seed Treatment with Cold Plasma Induces Changes in Physiological and Biochemical Parameters of Lettuce Cultivated in an Aeroponic System,” Agronomy, vol. 15, no. 6, p. 1371, Jun. 2025, doi: 10.3390/agronomy15061371.
S. Baldelli, M. Lombardo, A. D’Amato, S. Karav, G. Tripodi, and G. Aiello, “Glucosinolates in Human Health: Metabolic Pathways, Bioavailability, and Potential in Chronic Disease Prevention,” Foods, vol. 14, no. 6, p. 912, Mar. 2025, doi: 10.3390/foods14060912.
X. Liu et al., “Prospective cohort study of broccoli consumption frequency and all-cause and cause-specific mortality risks,” Front. Nutr., vol. 10, Jan. 2024, doi: 10.3389/fnut.2023.1286658.
T. E. Alaba, “The Antioxidants and Anti-Inflammatories Benefit of Broccoli Sprouts, Brassica oleracea var. italica,” 2024. [Online]. Available: https://search.proquest.com/openview/8a92a986cc6e9b8d9062f5c1cfaea008/1?pq-origsite=gscholar%5C&cbl=18750%5C&diss=y
Ministerio de Agricultura y Ganadería de Ecuador, “Productores de la provincia Bolívar reciben semillas de hortalizas,” 2020. [Online]. Available: https://www.agricultura.gob.ec/productores-de-la-provincia-bolivar-reciben-semillas-de-hortalizas/
H. Yu, Y. Song, W. Lv, D. Liu, and H. Huang, “Food safety risk assessment and countermeasures in China based on risk matrix method,” Front. Sustain. Food Syst., vol. 8, Apr. 2024, doi: 10.3389/fsufs.2024.1351826.
E. Andrade, F. Andrade, G. Oliveira, and O. Freitas‐Silva, “Critical monitoring and control factors for achieving food defense criteria,” Risk Anal., Apr. 2025, doi: 10.1111/risa.70025.
A. A. Akinsemolu and H. N. Onyeaka, “Microorganisms Associated with Food Spoilage and Foodborne Diseases,” in Food Safety and Quality in the Global South, Singapore: Springer Nature Singapore, 2024, pp. 489–531. doi: 10.1007/978-981-97-2428-4_16.
J. Soni, S. Sinha, and R. Pandey, “Understanding bacterial pathogenicity: a closer look at the journey of harmful microbes,” Front. Microbiol., vol. 15, Feb. 2024, doi: 10.3389/fmicb.2024.1370818.
A. N. Olaimat et al., “Common and Potential Emerging Foodborne Viruses: A Comprehensive Review,” Life, vol. 14, no. 2, p. 190, Jan. 2024, doi: 10.3390/life14020190.
D. Liu, “Classification of medically important fungi,” in Molecular Medical Microbiology, Elsevier, 2024, pp. 2763–2777. doi: 10.1016/B978-0-12-818619-0.00034-4.
Instituto Ecuatoriano de Normalización (INEN), “NTE INEN 1334‑1:2011. Norma técnica ecuatoriana – Rotulado de productos alimenticios para consumo humano. Parte 1: Requisitos,” 2011. [Online]. Available: https://www.controlsanitario.gob.ec/wp-content/uploads/downloads/2014/07/ec.nte_.1334.1.2011.pdf
M. P. Fernandes, F. Rodrigues, V. F. Cardoso, F. S. Silva, and M. M. Fernandes, “Electrical stimulation of table grape berries as new alternative for postharvest Escherichia coli contamination management,” Postharvest Biol. Technol., vol. 226, p. 113537, Aug. 2025, doi: 10.1016/j.postharvbio.2025.113537.
S. M. Díaz et al., “Microbiological hazard identification in river waters used for recreational activities,” Environ. Res., vol. 247, p. 118161, Apr. 2024, doi: 10.1016/j.envres.2024.118161.
L. Gomes, A. A. Bordalo, and A. Machado, “Characterization of Escherichia coli Isolates in Recreational Waters: Implications for Public Health and One Health Approach,” Water, vol. 16, no. 18, p. 2695, Sep. 2024, doi: 10.3390/w16182695.
W. P. van der Vossen-Wijmenga, H. M. W. den Besten, and M. H. Zwietering, “Temperature status of domestic refrigerators and its effect on the risk of listeriosis from ready-to-eat (RTE) cooked meat products,” Int. J. Food Microbiol., vol. 413, p. 110516, Mar. 2024, doi: 10.1016/j.ijfoodmicro.2023.110516.
D. Averbuch et al., “Listeria monocytogenes Infections in Hematopoietic Cell Transplantation Recipients: Clinical Manifestations and Risk Factors. A Multinational Retrospective Case-Control Study from the Infectious Diseases Working Party of the European Society for Blood and,” Transplant. Cell. Ther., vol. 30, no. 7, pp. 712.e1-712.e12, Jul. 2024, doi: 10.1016/j.jtct.2024.04.008.
M. S. Farooq et al., “Uncovering the Research Gaps to Alleviate the Negative Impacts of Climate Change on Food Security: A Review,” Front. Plant Sci., vol. 13, Jul. 2022, doi: 10.3389/fpls.2022.927535.
B. Lamichhane et al., “Salmonellosis: An Overview of Epidemiology, Pathogenesis, and Innovative Approaches to Mitigate the Antimicrobial Resistant Infections,” Antibiotics, vol. 13, no. 1, p. 76, Jan. 2024, doi: 10.3390/antibiotics13010076.
Agencia de Regulación y Control Fito y Zoosanitario (AGROCALIDAD), “INT/B/09 – Instructivo para la recolección, envasado, etiquetado y transporte de muestras al laboratorio de Bromatología,” 2014. [Online]. Available: https://www.agrocalidad.gob.ec/wp-content/uploads/2020/05/hy9.pdf
J. Rocha and P. Abrantes, Eds., Geographic Information Systems and Science. IntechOpen, 2019. doi: 10.5772/intechopen.75243.
L. Ulloa Meneses, F. Orozco Iguasnia, J. Orozco Iguasnia, and F. Carrera Calderón, “Sistema de información geográfica para la integración de información Geo referenciada de entidades públicas y privadas en la ciudad de Santo Domingo,” Rev. Científica y Tecnológica UPSE, vol. 4, no. 3, pp. 13–27, Dec. 2017, doi: 10.26423/rctu.v4i3.294.
Enciclopedia del Ecuador, “Guaranda,” 2014. [Online]. Available: https://www.enciclopediadelecuador.com/guaranda/
P. Parasuraman, S. Busi, and J.-K. Lee, “Standard Microbiological Techniques (Staining, Morphological and Cultural Characteristics, Biochemical Properties, and Serotyping) in the Detection of ESKAPE Pathogens,” in ESKAPE Pathogens, Singapore: Springer Nature Singapore, 2024, pp. 119–155. doi: 10.1007/978-981-99-8799-3_4.
L. Caycedo Lozano, L. C. Corrales Ramírez, and D. M. Trujillo Suárez, “Las bacterias, su nutrición y crecimiento: una mirada desde la química,” Nova, vol. 19, no. 36, pp. 49–94, Sep. 2021, doi: 10.22490/24629448.5293.
H. Khodadadi, E. Eghtedarnejad, A. Ahmadi, A. Khodadadi, and N. Shamsdin, “Evaluation of usage of readily accessible Enterobacteriaceae differential and selective media for identifying Candida auris,” Diagn. Microbiol. Infect. Dis., vol. 111, no. 1, p. 116589, Jan. 2025, doi: 10.1016/j.diagmicrobio.2024.116589.
A. R. Datta and L. S. Burall, “Detection of Listeria monocytogenes in Food and Environment,” in Diagnosis of Pathogenic Microorganisms Causing Infectious Diseases, Boca Raton: CRC Press, 2024, pp. 67–95. doi: 10.1201/9780429001192-5.
L. A. Neyaz et al., “A comprehensive review on the current status of culture media for routine standardized isolation of Salmonella and Shigella spp. from contaminated food,” J. Umm Al-Qura Univ. Appl. Sci., Nov. 2024, doi: 10.1007/s43994-024-00205-2.
A. Hafezi and Z. Khamar, “The Method and Analysis of Some Biochemical Tests Commonly Used for Microbial Identification: A Review,” Compr. Heal. Biomed. Stud., vol. 3, no. 2, Oct. 2024, doi: 10.5812/chbs-160199.
C. Jones, P. Romagnoli, and G. Trynka, “Blood Sample collection and PBMC isolation JAGUAR.v4 v1,” Jun. 01, 2023, Pearson Educación, S. A. doi: 10.17504/protocols.io.e6nvwjx4zlmk/v1.
G. J. Tortora, B. R. Funke, and C. L. Case, Microbiology: An Introduction, 13th ed. Hoboken, NJ: Pearson, 2018.
A. Tomkova, E. Cizmar, D. Jancura, and M. Fabian, “High stability of the radical at the catalytic center of cytochrome c oxidase,” Arch. Biochem. Biophys., vol. 764, p. 110271, Feb. 2025, doi: 10.1016/j.abb.2024.110271.
Q. Xie et al., “Characteristics of Neisseria meningitidis isolated from patients with urogenital infection in a region of China,” Ann. Clin. Microbiol. Antimicrob., vol. 24, no. 1, p. 43, Jul. 2025, doi: 10.1186/s12941-025-00810-x.
F. Li, L. Xin, J. Wang, and W. Chen, “Platinum nanoparticles-based electrochemical H2O2 sensor for rapid antibiotic susceptibility testing,” Talanta, vol. 281, p. 126835, Jan. 2025, doi: 10.1016/j.talanta.2024.126835.
Nissa Maulia Bestari et al., “Detection Salmonella sp. from swab clooca of broiler chicken at Keputran market, Surabaya Indonesia,” Open Access Res. J. Biol. Pharm., vol. 13, no. 1, pp. 021–029, Feb. 2025, doi: 10.53022/oarjbp.2025.13.1.0016.
A. D. Paradh, “Gram-negative spoilage bacteria in brewing,” in Brewing Microbiology, Elsevier, 2025, pp. 139–153. doi: 10.1016/B978-0-323-99606-8.00007-9.
N. Mrnjavac et al., “The radical impact of oxygen on prokaryotic evolution—enzyme inhibition first, uninhibited essential biosyntheses second, aerobic respiration third,” FEBS Lett., vol. 598, no. 14, pp. 1692–1714, Jul. 2024, doi: 10.1002/1873-3468.14906.
S. Povea-Cabello, M. Brischigliaro, and E. Fernández-Vizarra, “Emerging mechanisms in the redox regulation of mitochondrial cytochrome c oxidase assembly and function,” Biochem. Soc. Trans., vol. 52, no. 2, pp. 873–885, Apr. 2024, doi: 10.1042/BST20231183.
Y. A. J. Alabdali, D. A. Azeez, M. G. Munahi, and Z. I. Kuwait, “Molecular Analysis of Pseudomonas aeruginosa Isolates with Mutant gyrA Gene and Development of a New Ciprofloxacin Derivative for Antimicrobial Therapy,” Mol. Biotechnol., vol. 67, no. 2, pp. 649–660, Feb. 2025, doi: 10.1007/s12033-024-01076-y.
S. H. Sathyanarayana and L. M. Wainman, “Laboratory approaches in molecular pathology: the polymerase chain reaction,” in Diagnostic Molecular Pathology, Elsevier, 2024, pp. 13–25. doi: 10.1016/B978-0-12-822824-1.00041-9.
A. Afshari, R. Rezaee, and G. Shakeri, “Foodborne pathogens and their association with well-known enteric infections and emerging non-communicable disorders,” CABI Rev., Mar. 2024, doi: 10.1079/cabireviews.2024.0009.
C. Thystrup et al., “Etiology-specific incidence and mortality of diarrheal diseases in the African region: a systematic review and meta-analysis,” BMC Public Health, vol. 24, no. 1, p. 1864, Jul. 2024, doi: 10.1186/s12889-024-19334-8.
C. A. F. de Oliveira, A. G. da Cruz, P. Tavolaro, and C. H. Corassin, “Food Safety: Good Manufacturing Practices, Sanitation Standard Operating Procedures, Hazard Analysis, and Critical Control Point,” in Antimicrobial Food Packaging, Elsevier, 2025, pp. 163–173. doi: 10.1016/B978-0-323-90747-7.00011-9.
L. Rincon-Ballesteros, G. Lannelongue, and J. González-Benito, “Cross-Continental insights: Comparing food safety management systems in Europe and Latin America,” Food Control, vol. 164, p. 110552, Oct. 2024, doi: 10.1016/j.foodcont.2024.110552.
NTE, “INEN 1750_ Muestreo de Hortalizas y Frutas Frescas en Ecuador.pdf,” 1994, INEN, Quito.
Darwin Núñez, “Recognition of Pathogenic Bacteria in Drinking Water Through PCR Analysis,” J. Inf. Syst. Eng. Manag., vol. 10, no. 51s, pp. 795–808, May 2025, doi: 10.52783/jisem.v10i51s.10468.
H. Meghdadi, A. D. Khosravi, A. F. Sheikh, A. Alami, and N. Nassirabady, “Isolation and characterization of Listeria monocytogenes from environmental and clinical sources by culture and PCR-RFLP methods.,” Iran. J. Microbiol., vol. 11, no. 1, pp. 7–12, Feb. 2019, [Online]. Available: http://www.ncbi.nlm.nih.gov/pubmed/30996825
I. González-López et al., “Prevalence and Genomic Diversity of Salmonella enterica Recovered from River Water in a Major Agricultural Region in Northwestern Mexico,” Microorganisms, vol. 10, no. 6, p. 1214, Jun. 2022, doi: 10.3390/microorganisms10061214.
Interagency Food Safety Analytics Collaboration (IFSAC), “Foodborne Illness Source Attribution Estimates for 2020 for Salmonella, Escherichia coli O157, and Listeria monocytogenes Using Multi‑Year Outbreak Surveillance Data, United States,” 2022. [Online]. Available: https://www.cdc.gov/foodsafety/ifsac/pdf/P19-2020-report-TriAgency-508.pdf
P. Wiśniewski, W. Chajęcka-Wierzchowska, and A. Zadernowska, “Impact of High-Pressure Processing (HPP) on Listeria monocytogenes—An Overview of Challenges and Responses,” Foods, vol. 13, no. 1, p. 14, Dec. 2023, doi: 10.3390/foods13010014.
A. M. E. Sulieman, I. M. Abu Zeid, E. M. Abdalla, and A. Ed-Dra, “New Discoveries in Toxins from Gram-Positive Bacteria, Listeria monocytogenes,” in Microbial Toxins in Food Systems: Causes, Mechanisms, Complications, and Metabolism, Cham: Springer Nature Switzerland, 2024, pp. 303–318. doi: 10.1007/978-3-031-62839-9_23.
C. Carracedo Ghione et al., “Abortos tempranos y su relación con la listeria monicytogenes y el citomegalovirus: reporte de un caso,” Rev. Fac. Cienc. Med. Cordoba, vol. 80, 2023, [Online]. Available: https://revistas.unc.edu.ar/index.php/med/article/view/42776
L. N. Haber Garcia et al., “Cross-contamination and antimicrobial resistance in diarrheagenic Escherichia coli and Salmonella spp. from a mixed bovine and swine slaughterhouse,” Food Control, vol. 176, p. 111406, Oct. 2025, doi: 10.1016/j.foodcont.2025.111406.
R. I. Cortés-Higareda, M., Bautista-Baños, S., Ventura-Aguilar, “Bacterias patógenas de los alimentos agrícolas frescos y mínimamente procesados. Estado actual en el control del género salmonella,” Rev. Chil. Nutr., vol. 5, no. 7, pp. 1–76, 2021, [Online]. Available: https://www.redalyc.org/articulo.oa?id=81367929003
G. N. Charão et al., “Level of compliance with good manufacturing practices and microbiological profile of mixed fresh sausages,” Ciência Anim. Bras., vol. 25, 2024, doi: 10.1590/1809-6891v25e-76582e.
E. Ohman, S. Kilgore, J. Waite-Cusic, and J. Kovacevic, “Efficacy of cleaning and sanitizing procedures to reduce Listeria monocytogenes on food contact surfaces commonly found in fresh produce operations,” Food Microbiol., vol. 118, p. 104421, Apr. 2024, doi: 10.1016/j.fm.2023.104421.
U.S. Food and Drug Administration (FDA), “Bad Bug Book: Foodborne Pathogenic Microorganisms and Natural Toxins,” 2024, U.S. Department of Health and Human Services. [Online]. Available: https://www.fda.gov/media/83271/download
F. E. Sparaciari, C. Firth, E. A. Karlsson, and P. F. Horwood, “Zoonotic disease risk at traditional food markets,” J. Virol., Jul. 2025, doi: 10.1128/jvi.00718-25.
J. A. Vázquez-Boland et al., “Listeria Pathogenesis and Molecular Virulence Determinants,” Clin. Microbiol. Rev., vol. 14, no. 3, pp. 584–640, Jul. 2001, doi: 10.1128/CMR.14.3.584-640.2001.

Published
Series
Online ISSN
Categories
License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.